Index

This is the index page. The first page shown by MWiki.


Bookmarks ¶



Links to Mastodon Open Source communities:

Paper with DOI Hyperlink:

See this arxiv paper:

See this Arxiv paper:

Semantic Scholar Article:

Semantic Scholar Article:

RFC Standards:

RFC Standards:

Python PEP (1):

Python PEP (2):

Hyperlink to CVE (Common Vulnerability Exposures):

Internal Pages ¶


Hyperlinks to internal pages that still does not exist will be shown in red, while hyperlinks to existing internal pages will be shown as green.

Images ¶


Image of Java Duke Mascot (External Image):

![Java's Duke Mascot](/static/example_java_duke_mascot.svg)
Java's Duke Mascot

Internal Image:

![[logo-java-coffee-cup.png]]

Copying and pasting images.

For instance, this Python logo image whose MWiki markdown is

![[pasted-image-1743470376610.png]]

corresponds to the file

Figure ¶


Figure of Java Duke Mascot (External Image)

```{figure} /static/example_java_duke_mascot.svg
:width: 200px
:alt: Java duke mascot, one of the symbols of the Java programming language.

Java's Duke mascot
```
Java duke mascot, one of the symbols of the Java programming language.

1: Java's Duke mascot

Internal Figure

```{figure} ![[logo-java-coffee-cup.png]]
:name: unique-identifier-of-the-image-optional
:height: 200px
:alt: An iconic symbol of the Java programming language. Note the alt text should provide a detailed description of the image for better accessibility.

Java coffee cup symbol. 
```
An iconic symbol of the Java programming language. Note the alt text should provide a detailed description of the image for better accessibility.

2: Java coffee cup symbol.

Math ¶


Definition ¶

: (Inverse Matrix)

The inverse matrix \(A^{-1}\) of a matrix \(A: n \times n\) is defined as a matrix that when multiplied by the square matrix A yields the identity matrix. Note that not always an inverse matrix of a square matrix Q exists.

$$ \notag A^{-1} A \triangleq A^{-1} \triangleq \mathbf{I} $$

Theorem ¶

1: (Determinant of Orthogonal Matrix)

The determinant of a orthogonal matrix \(Q \in \mathbb{R}^{n \times n}\) of n rows and n columns is always 1.

$$ \notag \det(Q) = 1 $$
$$ \notag \begin{split} \det (Q Q^T) &= \det(Q) \det(Q^{T}) \\ \det (Q Q^T) &= \det(Q) \det(Q) \\ \det (Q Q^{-1}) &= \det(Q) \det(Q) \\ \det (\mathbf{I}) &= \det(Q)^2 \\ 1 &= \det{Q}^2 \\ \det(Q) &= 1 \end{split} $$

Solved Exercise ¶

Pseudocode of Algorithms in LaTeX ¶


Code in LaTeX:

```{pseudo}
\begin{algorithm}
\caption{Buble Sort Algorithm}
\begin{algorithmic}
\PROCEDURE{BubbleSort}{$A, n$}
   \STATE $B = $ \CALL{CopyArray}{$A, n$}
   \STATE $\:$ \textit{// i = 0, 1, ..., n - 1}
   \FOR{$i = 0$ \TO  $i < n$}
       \STATE $\:$ \textit{// j = 0, 1, ..., n - 2 }
       \FOR{$j = 0$ \TO $j < n - 1$}
           \IF{$B[j] > B[j+1]$}
               \STATE swap $B[j]$ with $B[j+1]$
           \ENDIF
       \ENDFOR
   \ENDFOR
   \RETURN{$B$}
\ENDPROCEDURE
\end{algorithmic}
\end{algorithm}
```

Rendering:

\begin{algorithm}
\caption{Buble Sort Algorithm}
\begin{algorithmic}
\PROCEDURE{BubbleSort}{$A, n$}
   \STATE $B = $ \CALL{CopyArray}{$A, n$}
   \STATE $\:$ \textit{// i = 0, 1, ..., n - 1}
   \FOR{$i = 0$ \TO  $i < n$}
       \STATE $\:$ \textit{// j = 0, 1, ..., n - 2 }
       \FOR{$j = 0$ \TO $j < n - 1$}
           \IF{$B[j] > B[j+1]$}
               \STATE swap $B[j]$ with $B[j+1]$
           \ENDIF
       \ENDFOR
   \ENDFOR
   \RETURN{$B$}
\ENDPROCEDURE
\end{algorithmic}
\end{algorithm}